Difference between revisions of "Laguerre L"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 21: Line 21:
 
[[Generating function for Laguerre L]]<br />
 
[[Generating function for Laguerre L]]<br />
 
[[L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))]]<br />
 
[[L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))]]<br />
 
+
[[L n(0)=1]]<br />
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[L n'(0)=-n]]<br />
<strong>Theorem (Orthogonality):</strong> The following formula holds:
+
[[Orthogonality of Laguerre L]]<br />
$$\displaystyle\int_0^{\infty} e^{-x}L_n(x)L_m(x)dx = \delta_{nm},$$
 
where $\delta_{mn}=0$ when $m\neq n$ and $\delta_{mn}=1$ when $m=n$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 14:22, 15 March 2018

The Laguerre polynomial of order $n$, $L_n$, is given by $$L_n(x) = \displaystyle\sum_{k=0}^n \dfrac{(-1)^kn!}{(n-k)!(k!)^2}x^k.$$

The first few Laguerre polynomials are given by $$\begin{array}{ll} L_0(x) &= 1 \\ L_1(x) &= -x+1 \\ L_2(x) &= \dfrac{1}{2}(x^2-4x+2) \\ L_3(x) &= \dfrac{1}{6}(-x^3+9x^2-18x+6) \\ L_4(x) &= \dfrac{1}{24}(x^4-16x^3+72x^2-96x+24)\\ \vdots \end{array}$$

Properties

Generating function for Laguerre L
L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))
L n(0)=1
L n'(0)=-n
Orthogonality of Laguerre L

Theorem: The following formula holds: $$(n+1)L_{n+1}(x)=(2n+1-x)L_n(x)-nL_{n-1}(x).$$

Proof:

Theorem: The following formula holds: $$xL_n'(x)=nL_n(x)-nL_{n-1}(x).$$

Proof:

Theorem: The following formula holds: $$L_n'(x)=-\displaystyle\sum_{k=0}^{n-1} L_k(x).$$

Proof:

See also

Associated Laguerre L

References

Orthogonal polynomials