Difference between revisions of "Exponential integral Ei"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 20: Line 20:
  
 
=References=
 
=References=
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|next=findme}}
+
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|next=Ei(-x)=-Integral from x to infinity of e^(-t)/t dt}}
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Logarithmic integral}}: $5.1.2$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Logarithmic integral}}: $5.1.2$
  

Revision as of 03:27, 17 March 2018

The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by $$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t.$$


Properties

Ei(-x)=-Integral from x to infinity of e^(-t)/t dt
Relationship between logarithmic integral and exponential integral
Exponential integral Ei series
Relationship between exponential integral Ei, cosine integral, and sine integral

See Also

Exponential integral E

References

$\ast$-integral functions