Difference between revisions of "Exponential integral Ei"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 12: Line 12:
  
 
=Properties=
 
=Properties=
[[Ei(-x)=-Integral from x to infinity of e^(-t)/t dt]]<br />
+
[[Ei(-x)=-Integral from -x to infinity of e^(-t)/t dt]]<br />
 
[[Relationship between logarithmic integral and exponential integral]]<br />
 
[[Relationship between logarithmic integral and exponential integral]]<br />
 
[[Exponential integral Ei series]]<br />
 
[[Exponential integral Ei series]]<br />

Revision as of 00:42, 24 March 2018

The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by $$\mathrm{Ei}(x) = \mathrm{PV}\int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t,$$ where $\mathrm{PV}$ denotes the Cauchy principal value.


Properties

Ei(-x)=-Integral from -x to infinity of e^(-t)/t dt
Relationship between logarithmic integral and exponential integral
Exponential integral Ei series
Relationship between exponential integral Ei, cosine integral, and sine integral

See Also

Exponential integral E

References

$\ast$-integral functions