Difference between revisions of "Q-Binomial"
From specialfunctionswiki
(→Properties) |
|||
Line 5: | Line 5: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>Theorem:</strong> For $|x|<1,|q|<1$, | <strong>Theorem:</strong> For $|x|<1,|q|<1$, | ||
− | $$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}} | + | $$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}}.$$ |
− | |||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> proof goes here █ | <strong>Proof:</strong> proof goes here █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 18:32, 27 July 2014
$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$ where $(q;q)_k$ is the q-Pochhammer symbol.
Properties
Theorem: For $|x|<1,|q|<1$, $$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}}.$$
Proof: proof goes here █