Difference between revisions of "Dirichlet beta in terms of Lerch transcendent"
From specialfunctionswiki
m (→Proof) |
(→Proof) |
||
Line 7: | Line 7: | ||
Starting from the Hadamard Fractional Integral representations of the Lerch Transcendent and the Dirichlet Beta functions, namely, | Starting from the Hadamard Fractional Integral representations of the Lerch Transcendent and the Dirichlet Beta functions, namely, | ||
− | $$\Phi (z,\alpha ,y) = \ | + | $$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$ |
and | and | ||
− | $$\beta (\alpha ) = \ | + | $$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}$$ |
− | $$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \ | + | $$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$, |
and the proof is demonstrated. | and the proof is demonstrated. |
Revision as of 12:01, 30 March 2022
Theorem
The following formula holds: $$\beta(x) = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\beta$ denotes Dirichlet beta and $\Phi$ denotes the Lerch transcendent.
Proof
Starting from the Hadamard Fractional Integral representations of the Lerch Transcendent and the Dirichlet Beta functions, namely,
$$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$
and
$$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}$$
$$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$,
and the proof is demonstrated.