Difference between revisions of "Buchstab function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]]  
 
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]]  
$$\dfrac{d}{du}(u\omega(u-1)); u \geq 2$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}u}(u\omega(u-1)); u \geq 2$$
 
and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.
 
and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.
  

Revision as of 13:32, 8 November 2024

The Buchstab function is a continuous function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the initial value problem $$\dfrac{\mathrm{d}}{\mathrm{d}u}(u\omega(u-1)); u \geq 2$$ and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.

References

A differential delay equation arising from the Sieve of Eratosthenes