Difference between revisions of "Dedekind eta"
From specialfunctionswiki
(Created page with "Let $q=e^{2\pi i t}$. We define the Dedekind eta function by the formula $$\eta(t) = e^{\frac{\pi i t}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$") |
|||
Line 1: | Line 1: | ||
− | Let $q=e^{2\pi i | + | Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula |
− | $$\eta( | + | $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$ |
Revision as of 22:50, 27 July 2014
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$