Difference between revisions of "Airy Bi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Airy functions $\mathrm{Ai}$ and $\mathrm{Bi}$ solve the differential equation $$y'' - xy = 0.$$")
 
Line 1: Line 1:
 
The Airy functions $\mathrm{Ai}$ and $\mathrm{Bi}$ solve the differential equation
 
The Airy functions $\mathrm{Ai}$ and $\mathrm{Bi}$ solve the differential equation
 
$$y'' - xy = 0.$$
 
$$y'' - xy = 0.$$
 +
 +
It can be shown that
 +
$$\mathrm{Ai}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \cos \left( \dfrac{t^3}{3} + xt \right) dt$$
 +
and
 +
$$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$

Revision as of 01:00, 3 August 2014

The Airy functions $\mathrm{Ai}$ and $\mathrm{Bi}$ solve the differential equation $$y - xy = 0.$$

It can be shown that $$\mathrm{Ai}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \cos \left( \dfrac{t^3}{3} + xt \right) dt$$ and $$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$