Difference between revisions of "Fransén–Robinson constant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Fransén–Robinson constant is defined to be the number $F$ given by the formula $$F = \displaystyle\int_0^{\infty} \dfrac{1}{\Gamma(x)} dx.$$")
 
Line 1: Line 1:
 
The Fransén–Robinson constant is defined to be the number $F$ given by the formula
 
The Fransén–Robinson constant is defined to be the number $F$ given by the formula
 
$$F = \displaystyle\int_0^{\infty} \dfrac{1}{\Gamma(x)} dx.$$
 
$$F = \displaystyle\int_0^{\infty} \dfrac{1}{\Gamma(x)} dx.$$
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition (Relation to [[e|$e$]] and [[pi|$\pi$]]):</strong> $F=e+\displaystyle\int_0^{\infty} \dfrac{e^{-x}}{\pi^2+\log(x)^2}.$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>

Revision as of 17:26, 21 September 2014

The Fransén–Robinson constant is defined to be the number $F$ given by the formula $$F = \displaystyle\int_0^{\infty} \dfrac{1}{\Gamma(x)} dx.$$

Proposition (Relation to $e$ and $\pi$): $F=e+\displaystyle\int_0^{\infty} \dfrac{e^{-x}}{\pi^2+\log(x)^2}.$

Proof: proof goes here █