Weierstrass factorization theorem

From specialfunctionswiki
Revision as of 06:17, 20 March 2015 by Tom (talk | contribs)
Jump to: navigation, search

Examples of Weierstrass factorizations

Theorem

The following formula holds: $$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$ where $\sin$ denotes the sine function and $\pi$ denotes pi.

Proof

References

Theorem

The Weierstrass factorization of $\cos(x)$ is $$\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right).$$

Proof

References