Pi

From specialfunctionswiki
Revision as of 15:49, 7 April 2015 by Tom (talk | contribs) (Properties)
Jump to: navigation, search

A circle in Euclidean plane geometry is defined to be the set of points equidistant from a center point. The length around a circle is called its circumference and the length a line from the circle through the center is called a diameter of the circle. All diameters have the same length by definition of the circle. Let $A$ be a circle. The number $\pi$ is defined to be the ratio $\dfrac{C}{D}$ where $C$ is the circumference of $A$ and $D$ the diameter of $A$. It requires proof to show that the value obtained from the circle $A$, call this $\pi_A$, is the same number one obtains from another circle $B$, the value $\pi_B$.

Properties

Theorem: The value of $\pi$ is independent of which circle it is defined for.

Proof:

Theorem: The real number $\pi$ is an irrational number.

Proof:

References

Proof that $\pi$ is constant for all circles without using limits

Proof that $\pi$ exists (video)

Proof that $\pi$ exists

The story of $\pi$ by Tom Apostol (video)

A simple proof that $\pi$ is irrational by Ivan Niven