Basic hypergeometric phi
The basic hypergeometric series ${}_j\phi{}_{\ell}$ is defined by $${}_j\phi_{\ell}(a_1,\ldots,a_j;b_1,\ldots,b_{\ell};q,z)={}_j \phi_{\ell} \left[ \begin{array}{llllll} a_1 & a_2 & \ldots & a_j \\
& & & & ; q,z \\
b_1 & b_2 & \ldots & b_{\ell} \end{array}\right]=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1;q)_k \ldots (a_j;q)_k}{(b_1;q)_k \ldots (b_{\ell};q)_k} \left((-1)^kq^{k \choose 2} \right)^{1+\ell-j}z^k=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1;q)_k \ldots (a_j;q)_k}{(b_1;q)_k \ldots (b_{\ell};q)_k} \left(-q^{\frac{k-1}{2}} \right)^{k(1+\ell-j)}z^k.$$
Properties
Theorem: The following formula holds: $$\displaystyle\lim_{q \rightarrow 1^-} {}_j \phi_{\ell} \left[ \begin{array}{l|l} q^{a_1}, \ldots, q^{a_j} \\ q^{b_1}, \ldots, q^{b_{\ell}} \end{array} \Bigg| q,z(1-q)^{1+\ell-j} \right]={}_j F_{\ell}\left(a_1,\ldots,a_j;b_1,\ldots,b_{\ell};(-1)^{1+\ell-j}z \right)$$
Proof: █