Denisyuk polynomials
From specialfunctionswiki
The Denisyuk polynomials $M_n(x)$ are defined by $$\dfrac{1}{1+t} \exp \left( -\dfrac{xt}{1-t} \right) = \displaystyle\sum_{k=0}^{\infty} t^k M_k(x).$$
The Denisyuk polynomials $M_n(x)$ are defined by $$\dfrac{1}{1+t} \exp \left( -\dfrac{xt}{1-t} \right) = \displaystyle\sum_{k=0}^{\infty} t^k M_k(x).$$