Arccos
The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the inverse function of the cosine function.
Domain coloring of $\mathrm{arccos}$.
Properties
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$ where $\mathrm{arccos}$ denotes the inverse cosine function.
Proof
If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use implicit differentiation with respect to $z$ to get
$$-\sin(\theta)\theta'=1.$$
The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$:
Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$
References
Proposition: $\displaystyle\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$
Proof: █
Proposition: $\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$
Proof: █