Derivative of arcsec
From specialfunctionswiki
Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsec}(z) = -\dfrac{1}{\sqrt{z^2-1}|z|},$$ where $\mathrm{arcsec}$ is the inverse secant function.
Proof: █