Anger function

From specialfunctionswiki
Revision as of 17:01, 23 May 2016 by Tom (talk | contribs) (See Also)
Jump to: navigation, search

The Anger function is defined by $$\mathbf{J}_{\nu}(z) = \dfrac{1}{\pi} \displaystyle\int_0^{\pi} \cos(\nu \theta - z \sin(\theta)) \mathrm{d}\theta.$$

Properties

Theorem

The following formula holds: $$\textbf{J}_{\nu}(0)=\dfrac{\sin(\pi \nu)}{\pi \nu},$$ where $\textbf{J}_{\nu}$ denotes an Anger function, $\sin$ denotes the sine, and $\pi$ denotes pi.

Proof

References

Theorem

The following formula holds: $$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$ where $\textbf{J}_{\nu}$ denote the Anger function, $\pi$ denotes pi, and $\sin$ denotes sine.

Proof

References

Theorem

The following formula holds: $$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}_{\nu-1}(z)-\mathbf{J}_{\nu+1}(z),$$ where $\mathbf{J}_{\nu}$ denotes the Anger function.

Proof

References

Theorem

The following formula holds for integer $n$: $$\mathbf{J}_n(z)=J_n(z),$$ where $\mathbf{J}_n$ denotes an Anger function and $J_n$ denotes a Bessel function of the first kind.

Proof

References

Theorem

The following formula holds: $$\sin(\nu \pi)\mathbf{E}_{\nu}(z)=\mathbf{J}_{-\nu}(z)-\cos(\nu \pi)\mathbf{J}_{\nu}(z),$$ where $\mathbf{E}_{\nu}$ denotes a Weber function and $\mathbf{J}_{\nu}$ denotes an Anger function.

Proof

References

Theorem

The following formula holds: $$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$ where $\mathbf{J}_{\nu}$ denotes an Anger function and $\mathbf{E}_{\nu}$ denotes a Weber function.

Proof

References

See Also

Bessel J Weber function

References

Abramowitz and Stegun