Bessel J

From specialfunctionswiki
Revision as of 19:10, 6 June 2016 by Tom (talk | contribs)
Jump to: navigation, search

The Bessel functions of the first kind, $J_{\nu}$, have a power series expansion $$J_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{k! \Gamma(k+\nu+1)2^{2k+\nu}}z^{2k+\nu},$$ where $\Gamma$ denotes the gamma function.

Properties

Bessel J sub nu and Y sub nu solve Bessel's differential equation
Bessel J sub nu and Y sub nu solve Bessel's differential equation (constant multiple in argument)
Bessel J sub nu and Y sub nu solve Bessel's differential equation (monomial multiple outside,weighted monomial in argument)
Bessel polynomial in terms of Bessel functions
Bessel at n+1/2 in terms of Bessel polynomial
Bessel at -n-1/2 in terms of Bessel polynomial
Relationship between Bessel J sub nu and hypergeometric 0F1
Relationship between Bessel I sub n and Bessel J
Relationship between Anger function and Bessel J

Videos

Bessel Equation and Bessel functions
Mod-1 Lec-6 Bessel Functions and Their Properties-I
Bessel's Equation by Free Academy
Taylor Series, Bessel, single Variable Calculus, Coursera.org
Ordinary Differential Equations Lecture 7—Bessel functions and the unit step function
Laplace transform of Bessel function order zero
Laplace transform: Integral over Bessel function is one
Orthogonal Properties of Bessel Function, Orthogonal Properties of Bessel Equation

Links

Addition formulas for Bessel functions
Relations between Bessel functions by John D. Cook

<center>Bessel functions
</center>