Relationship between cos and cosh

From specialfunctionswiki
Revision as of 03:48, 8 December 2016 by Tom (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

The following formula holds: $$\cos(z)=\cosh(iz),$$ where $\cos$ is the cosine and $\cosh$ is the hyperbolic cosine.

Proof

From the definition of $\cosh$ and the definition of $\cos$, $$\cosh(iz)=\dfrac{e^{iz}+e^{-iz}}{2}=\cos(z),$$ as was to be shown.

References