Euler E generating function

From specialfunctionswiki
Revision as of 01:05, 4 March 2018 by Tom (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

The following formula holds for $|z|<\pi$: $$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$ where $e^{xt}$ denotes the exponential function and $E_n$ denotes an Euler E polynomial.

Proof

References