Cosine

From specialfunctionswiki
Revision as of 01:50, 4 November 2014 by Tom (talk | contribs)
Jump to: navigation, search

The cosine function, $\cos \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\cos(z)=\dfrac{e^{iz}-e^{-iz}}{2},$$ where $e^z$ is the exponential function.

Properties

Proposition: $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$

Proof:

Proposition: $\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$

Proof: