Legendre P
From specialfunctionswiki
Revision as of 10:01, 19 January 2015 by Tom (talk | contribs) (Tom moved page Legendre polynomial to Legendre P)
The Legendre polynomials are orthogonal polynomials defined by the recurrence $$P_n(x) = \dfrac{1}{2^nn!}\dfrac{d^n}{dx^n}(x^2-1)^n; n=0,1,2,\ldots$$ $$\begin{array}{ll} P_0(x) &= 1 \\ P_1(x) &= x \\ P_2(x) &= \dfrac{1}{2}(3x^2-1) \\ P_3(x) &= \dfrac{1}{2}(5x^3-3x) \\ \vdots \end{array}$$