Chebyshev U
From specialfunctionswiki
The Chebyshev polynomials of the second kind are orthogonal polynomials defined by $$U_n(x) = \sin(n \mathrm{arcsin}(x)).$$
Properties
Theorem: The following formula holds: $$\int_{-1}^1 \dfrac{U_m(x)U_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} 0 &; m \neq n \\ \dfrac{\pi}{2} &; m=n\neq 0\\ 0 &; m=n=0. \end{array} \right.$$
Proof: █