Dirichlet eta
From specialfunctionswiki
Revision as of 08:14, 19 January 2015 by Tom (talk | contribs) (Tom moved page Dirichlet eta function to Dirichlet eta)
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.