Knopp function

From specialfunctionswiki
Revision as of 19:45, 22 January 2016 by Tom (talk | contribs)
Jump to: navigation, search

Let $a \in (0,1), ab > 4,$ and $b>1$ an even integer. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by $$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.

Properties

Theorem: The Knopp function $K_{a,b}$ is continuous on $\mathbb{R}$ for $a \in (0,1)$ and $ab>1$.

Proof:

Theorem: The Knopp function $K_{a,b}$ is nowhere differentiable on $\mathbb{R}$ for $a \in (0,1)$and $ab > 1$.

Proof:

References

[1]