Derivative of arcsec
From specialfunctionswiki
Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsec}(z) = -\dfrac{1}{\sqrt{z^2-1}|z|},$$ where $\mathrm{arcsec}$ is the inverse secant function.
Proof: █
Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsec}(z) = -\dfrac{1}{\sqrt{z^2-1}|z|},$$ where $\mathrm{arcsec}$ is the inverse secant function.
Proof: █