Peters polynomials
From specialfunctionswiki
The Peters polynomials $s_n(x)$ are given by $$\dfrac{(1+t)^x}{(1+(1+t)^{\lambda})^{-\mu}}=\displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$
The Peters polynomials $s_n(x)$ are given by $$\dfrac{(1+t)^x}{(1+(1+t)^{\lambda})^{-\mu}}=\displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$