Real and imaginary parts of log

From specialfunctionswiki
Revision as of 05:52, 4 June 2016 by Tom (talk | contribs) (Created page with "==Theorem== Write $z \in \mathbb{C}$ using polar coordinates: $z=x+iy=re^{i\theta}$. The following formula holds for $-\pi < \mathrm{arg}(z) \leq \pi$: $$\log(z)=\log(r)+i...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

Write $z \in \mathbb{C}$ using polar coordinates: $z=x+iy=re^{i\theta}$. The following formula holds for $-\pi < \mathrm{arg}(z) \leq \pi$: $$\log(z)=\log(r)+i\theta,$$ where $\mathrm{arg}$ denotes the argument and $\log$ denotes the logarithm.

Proof

References