Q-Cos
From specialfunctionswiki
The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$.
Properties
Theorem: The following formula holds: $$D_q \mathrm{Cos}_q(az) = -a \mathrm{Sin}_q(az),$$ where $D_q$ denotes the q-difference operator, $\mathrm{Cos}$ denotes the $q$-Cosine function, and $\mathrm{Sin}$ denotes the $q$-Sine function.
Proof: █