Legendre chi
From specialfunctionswiki
The Legendre chi function $\chi_{\nu}$ is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
Properties
Derivative of Legendre chi
Legendre chi in terms of polylogarithm
Catalan's constant using Legendre chi