2F0(a,b;;z)2F0(a,b;;-z)=4F1(a,b,a/2+b/2,a/2+b/2+1/2;a+b;4z^2)

From specialfunctionswiki
Revision as of 20:07, 17 June 2017 by Tom (talk | contribs) (Created page with "==Theorem== The following formula holds: $${}_2F_0(a,b;;z){}_2F_0(a,b;;-z)={}_4F_1 \left(a, b, \dfrac{a}{2} + \dfrac{b}{2}, \dfrac{a}{2} + \dfrac{b}{2} + \dfrac{1}{2}; a+b; 4z...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

The following formula holds: $${}_2F_0(a,b;;z){}_2F_0(a,b;;-z)={}_4F_1 \left(a, b, \dfrac{a}{2} + \dfrac{b}{2}, \dfrac{a}{2} + \dfrac{b}{2} + \dfrac{1}{2}; a+b; 4z^2 \right),$$ where ${}_2F_0$ denotes hypergeometric 2F0 and ${}_4F_1$ denotes hypergeometric 4F1.

Proof

References