Mittag-Leffler
From specialfunctionswiki
The Mittag-Leffler function $E_{\alpha, \beta}$ is defined by the series $$E_{\alpha, \beta}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{\Gamma(\alpha k + \beta)},$$ where $\Gamma$ denotes the gamma function.