B(x,y+1)=(y/(x+y))B(x,y)
From specialfunctionswiki
Theorem
The following formula holds: $$B(x,y+1)=\dfrac{y}{x+y} B(x,y),$$ where $B$ denotes the beta function.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.5 (6)$