Dedekind eta
From specialfunctionswiki
Let $q=e^{2\pi i t}$. We define the Dedekind eta function by the formula $$\eta(t) = e^{\frac{\pi i t}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
Let $q=e^{2\pi i t}$. We define the Dedekind eta function by the formula $$\eta(t) = e^{\frac{\pi i t}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$