Oldest pages
Showing below up to 50 results in range #951 to #1,000.
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)
- Gamma function written as infinite product (20:56, 3 March 2018)
- Reciprocal gamma written as an infinite product (20:56, 3 March 2018)
- Euler-Mascheroni constant (20:57, 3 March 2018)
- Beta as improper integral (20:57, 3 March 2018)
- B(x,y)=integral (t^(x-1)+t^(y-1))(1+t)^(-x-y) dt (20:57, 3 March 2018)
- Beta is symmetric (20:57, 3 March 2018)
- Beta as product of gamma functions (20:58, 3 March 2018)
- B(x,y+1)=(y/x)B(x+1,y) (20:58, 3 March 2018)
- B(x,y+1)=(y/(x+y))B(x,y) (20:58, 3 March 2018)
- B(x,y)B(x+y,z)=B(y,z)B(y+z,x) (20:58, 3 March 2018)
- B(x,y)B(x+y,z)=B(z,x)B(x+z,y) (20:58, 3 March 2018)
- B(x,y)B(x+y,z)B(x+y+z,u)=Gamma(x)Gamma(y)Gamma(z)Gamma(u)/Gamma(x+y+z+u) (21:01, 3 March 2018)
- 1/B(n,m)=m((n+m-1) choose (n-1)) (21:01, 3 March 2018)
- 1/B(n,m)=n((n+m-1) choose (m-1)) (21:02, 3 March 2018)
- B(x,y)=2^(1-x-y)integral (1+t)^(x-1)(1-t)^(y-1)+(1+t)^(y-1)(1-t)^(x-1) dt (21:02, 3 March 2018)
- Integral t^(x-1)(1-t)^(y-1)(1+bt)^(-x-y)dt = (1+b)^(-x)B(x,y) (21:02, 3 March 2018)
- Integral t^(x-1)(1+bt)^(-x-y) dt = b^(-x) B(x,y) (21:03, 3 March 2018)
- Integral (t-b)^(x-1)(a-t)^(y-1)dt=(a-b)^(x+y-1)B(x,y) (21:03, 3 March 2018)
- Integral of (t-b)^(x-1)(a-t)^(y-1)/(t-x)^(x+y) dt=(a-b)^(x+y-1)/((a-c)^x(b-c)^y) B(x,y) (21:03, 3 March 2018)
- Integral of (t-b)^(x-1)(a-t)^(y-1)/(c-t)^(x+y) dt = (a-b)^(x+y-1)/((c-a)^x (c-b)^y) B(x,y) (21:03, 3 March 2018)
- Integral of (1+bt^z)^(-y)t^x dt = (1/z)*b^(-(x+1)/z) B((x+1)/z,y-(x+1)/z) (21:03, 3 March 2018)
- Integral of t^(x-1)(1-t^z)^(y-1) dt=(1/z)B(x/z,y) (21:03, 3 March 2018)
- Integral of (1+t)^(2x-1)(1-t)^(2y-1)(1+t^2)^(-x-y)dt=2^(x+y-2)B(x,y) (21:04, 3 March 2018)
- Beta in terms of sine and cosine (21:04, 3 March 2018)
- Digamma (23:21, 3 March 2018)
- Digamma at 1 (23:22, 3 March 2018)
- Digamma functional equation (23:22, 3 March 2018)
- Digamma at n+1 (23:22, 3 March 2018)
- Digamma at z+n (23:22, 3 March 2018)
- Lerch transcendent (23:22, 3 March 2018)
- Dilogarithm (23:22, 3 March 2018)
- Relationship between dilogarithm and log(1-z)/z (23:23, 3 March 2018)
- Li2(z)=zPhi(z,2,1) (23:23, 3 March 2018)
- Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3 (23:23, 3 March 2018)
- Bernoulli numbers (23:23, 3 March 2018)
- Hypergeometric 2F1 (23:23, 3 March 2018)
- (c-2a-(b-a)z)2F1+a(1-z)2F1(a+1)-(c-a)2F1(a-1)=0 (23:23, 3 March 2018)
- (b-a)2F1+a2F1(a+1)-b2F1(b+1)=0 (23:23, 3 March 2018)
- (c-a-b)2F1+a(1-z)2F1(a+1)-(c-b)2F1(b-1)=0 (23:24, 3 March 2018)
- C(a-(c-b)z)2F1-ac(1-z)2F1(a+1)+(c-a)(c-b)z2F1(c+1)=0 (23:24, 3 March 2018)
- (c-a-1)2F1+a2F1(a+1)-(c-1)2F1(c-1)=0 (23:24, 3 March 2018)
- (c-a-b)2F1-(c-a)2F1(a-1)+b(1-z)2F1(b+1)=0 (23:24, 3 March 2018)
- Pochhammer (23:25, 3 March 2018)
- Pochhammer symbol with non-negative integer subscript (23:25, 3 March 2018)
- 2F1(a,b;a+b+1/2;z)^2=3F2(2a,a+b,2b;a+b+1/2,2a+2b;z) (23:25, 3 March 2018)
- 0F1(;r;z)0F1(;s;z)=2F1(r/2+s/2, r/2+s/2-1/2;r,s,r+s-1;4z) (23:25, 3 March 2018)
- 0F1(;r;z)0F1(;r;-z)=0F3(r,r/2,r/2+1/2;-z^2/4) (23:25, 3 March 2018)
- 2F0(a,b;;z)2F0(a,b;;-z)=4F1(a,b,a/2+b/2,a/2+b/2+1/2;a+b;4z^2) (23:25, 3 March 2018)
- 1F1(a;r;z)1F1(a;r;-z)=2F3(a,r-a;r,r/2,r/2+1/2;z^2/4) (23:25, 3 March 2018)
- 1F1(a;2a;z)1F1(b;2b;-z)=2F3(a/2+b/2,a/2+b/2+1/2;a+1/2,b+1/2,a+b;z^2/4) (23:26, 3 March 2018)