Laguerre L
From specialfunctionswiki
Laguerre's equation is $$x\dfrac{y^2x}{dx^2}+(1-x)\dfrac{dy}{dx}+ny=0.$$ One of the solutions of this differential equations are the Laguerre polynomials $$L_n(x) = \displaystyle\sum_{k=0}^n (-1)^k \dfrac{n!}{(n-r)!(r!)^2}x^r.$$
Properties
Theorem: The following formula holds: $$\dfrac{e^{\frac{-xt}{1-t}}}{1-t} = \displaystyle\sum_{k=0}^{\infty} L_k(x)t^k.$$
Proof: █