Arcsin
From specialfunctionswiki
The $\mathrm{arcsin}$ function is the inverse function of the sine function.
500px
Properties
Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$
Proof: █
Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$
Proof: █
Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$
Proof: █
Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$
Proof: █