Laplace transform
From specialfunctionswiki
Let $f \colon \mathbb{R} \rightarrow \mathbb{C}$ be a function, then the Laplace transform of $f$ is the function defined by $$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} e^{-zt}f(t) dt.$$
Videos
Laplace transform of power function with real exponent
Laplace transform of $\sin(\sqrt{t})$
Laplace transform of impulse function
Laplace Transform of sine integral
Laplace transform of cosine integral]