Riemann xi
From specialfunctionswiki
The Riemann $\xi$ function (sometimes called the Riemann $\Xi$ function) is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Riemann zeta function.