Cotangent
From specialfunctionswiki
The cotangent function is defined by the formula $$\cot(z)=\dfrac{1}{\tan z}=\dfrac{\cos(z)}{\sin(z)},$$ where $\tan$ denotes the tangent function.
- Cotangent.png
Plot of cotangent function on $\mathbb{R}$.
- Complex Cot.jpg
Domain coloring of analytic continuation of $\cot$.
Properties
Proposition: $\dfrac{d}{dx}$$\cot$$(x)=-$$\csc$$^2(x)$
Proof: █