Euler-Mascheroni constant

From specialfunctionswiki
Revision as of 01:46, 21 March 2015 by Tom (talk | contribs)
Jump to: navigation, search

$$\gamma = \lim_{m \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{m}-\log(m) = 0.577215664901532 \ldots$$

Theorem: The limit defining $\gamma$ exists.

Proof: Let $u_n=\displaystyle\int_0^1 \dfrac{t}{n(t+n)} dt$. Clearly, $$0 < u_n < \displaystyle\int_0^1 \dfrac{1}{n^2} dt = \dfrac{1}{n^2}.$$ Now compute $$\begin{array}{ll} u_n &= \dfrac{1}{n} \displaystyle\int_0^1 1 - \dfrac{n}{t+n} dt \\ &= \dfrac{1}{n} \left[ 1 - n(\log (1+n)-\log n) \right] \\ &= \dfrac{1}{n} - \log \left(\dfrac{n+1}{n} \right). \end{array}$$

Since $u_n < \dfrac{1}{n^2}$ and we know that $\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k^2}$ converges (it is the Riemann zeta function evaluated at $z=2$), we can conclude that $\displaystyle\sum_{k=1}^{\infty} u_k$ also converges.

Notice that due to telescoping and the properties of the logarithm, $$\displaystyle\sum_{k=1}^m \log \left( \dfrac{k+1}{k} \right) = \log \left(\dfrac{2}{1} \right) + \log\left( \dfrac{3}{2} \right) + \ldots \log \left( \dfrac{m+1}{m} \right)= \log(m+1)$$ Now we see $$\begin{array}{ll} \displaystyle\sum_{k=1}^{\infty} u_k &= \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k} - \log \left( \dfrac{k+1}{k} \right) \\ &=\displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{m} \dfrac{1}{k} - \log(m+1) \right]. \end{array}$$ Since $\displaystyle\lim_{m \rightarrow \infty} \log \left( \dfrac{m+1}{m} \right)=0$, we may rewrite it as $\log(m+1)-\log(m)$ and insert it into the above equation to get $$\begin{array}{ll} \displaystyle\sum_{k=1}^{\infty} u_k &=\displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{m} \dfrac{1}{k} - \log(m+1) + \log(m+1)-\log(m) \right] \\ &= \displaystyle\lim_{m \rightarrow \infty} \left( 1 + \dfrac{1}{2} + \dfrac{1}{3} + \ldots + \dfrac{1}{m} - \log(m) \right), \end{array}$$ as was to be shown. █

Properties

Gamma function Weierstrass product

Theorem

The following formula holds for $x>0$: $$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!},$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.

Proof

References

Further properties

The Euler-Mascheroni constant appears in the definition of...

  1. the hyperbolic cosine integral
  2. the Barnes G function