Weierstrass sigma

From specialfunctionswiki
Revision as of 23:14, 21 May 2015 by Tom (talk | contribs) (Created page with "Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass $\sigma$ function is defined by $$\sigma(z;\Lambda)=z \displaystyle\prod_{w \in \Lambda^*} \left( 1 - \dfrac...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass $\sigma$ function is defined by $$\sigma(z;\Lambda)=z \displaystyle\prod_{w \in \Lambda^*} \left( 1 - \dfrac{z}{w} \right) e^{\frac{z}{w}+\frac{1}{2}(\frac{z}{w})^2},$$ where $\Lambda^*=\Lambda \setminus \{0\}$.