Pidduck polynomial
From specialfunctionswiki
The Pidduck polynomials $s_n(x)$ are given by $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$
The Pidduck polynomials $s_n(x)$ are given by $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$