Relationship between Scorer Gi and Airy functions
From specialfunctionswiki
Theorem: The following formula holds: $$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)dt + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t)dt,$$ where $\mathrm{Gi}$ denotes the Scorer Gi function, $\mathrm{Ai}$ denotes the Airy Ai function, and $\mathrm{Bi}$ denotes the Airy Bi function.
Proof: █