Bernardi operator
From specialfunctionswiki
The Bernardi operator $L_{\gamma}$ is defined for $\gamma \in \mathbb{Z}^+$ by $$L_{\gamma}\{f\}(z)=\dfrac{1+\gamma}{z^{\gamma}} \displaystyle\int_0^z f(\tau) \tau^{\gamma-1}.$$
The Bernardi operator $L_{\gamma}$ is defined for $\gamma \in \mathbb{Z}^+$ by $$L_{\gamma}\{f\}(z)=\dfrac{1+\gamma}{z^{\gamma}} \displaystyle\int_0^z f(\tau) \tau^{\gamma-1}.$$