Nielsen-Ramanujan sequence
From specialfunctionswiki
The Nielsen-Ramanujan sequence $\{a_k\}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.
The Nielsen-Ramanujan sequence $\{a_k\}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.