Bessel-Clifford
From specialfunctionswiki
Let $\pi(x)=\dfrac{1}{\Gamma(x+1)}$, where $\Gamma$ denotes the gamma function. The Bessel-Clifford function $\mathcal{C}_n$ is defined by $$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \pi(k+n)\dfrac{z^k}{k!}.$$