Integral representation of polygamma for Re(z) greater than 0

From specialfunctionswiki
Revision as of 19:20, 3 June 2016 by Tom (talk | contribs) (Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem: The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ where $\psi^{(m)}$ denotes the polygamma and $e^{-zt}$ denotes the exponential.

Proof: