Taylor series of log(1+z)
From specialfunctionswiki
Theorem
The following formula holds for $|z| \leq 1$ and $z \neq -1$: $$\log(1+z)=-\displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^kz^k}{k},$$ where $\log$ denotes the logarithm.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous): 4.1.24