Value of derivative of trigamma at positive integer plus 1/2

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\psi^{(m)} \left( n + \dfrac{1}{2} \right)=\dfrac{\pi^2}{2} - 4 \displaystyle\sum_{k=1}^n \dfrac{1}{(2k-1)^2},$$ where $\psi^{(m)}$ denotes the polygamma and $\pi$ denotes pi.

Proof

References