Hypergeometric pFq
Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations $$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$ and $$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$ (and similar for $\vec{b}^{\overline{k}}$). Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$
Contents
Convergence
If any of the $a_j$'s is a a nonpositive integer, then the series terminates and is a polynomial.
If any of the $b_{\ell}$'s is a nonpositive integer, the series diverges because of divison by zero.
The remaining convergence of the series can be split into three cases:
Case I: $p<q+1$
Proposition: The series ${}_pF_q$ converges for all $t \in \mathbb{C}$.
Proof: Notice if $t=0$ then the series converges trivially, so suppose $t \neq 0$. We will apply the ratio test. Let $\alpha_k=\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}$. Then $$\begin{array}{ll} L &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\alpha_{k+1}}{\alpha_k} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\dfrac{\vec{a}^{\overline{k}}t^k}{\vec{b}^{\overline{k}}k!}}{\dfrac{\vec{a}^{\overline{k+1}}t^{k+1}}{\vec{b}^{\overline{k+1}}(k+1)!}} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{\vec{a}^{\overline{k}} \vec{b}^{\overline{k+1}}(k+1)!t^k }{\vec{b}^{\overline{k}} \vec{a}^{\overline{k+1}}k!t^{k+1}} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{k(\vec{b}+k)}{(\vec{a}+k)t} \right| \\ &= \displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{O(k^{q+1})}{O(k^{p})}\right| \\ &= 0 < 1, \end{array}$$ therefore the series converges for all $t \in \mathbb{C}$. █
Case II: $p=q+1$
Proposition: The series ${}_pF_q$ converges for all $t\in \mathbb{C}$ with $|t|<1$.
Proof: █
Case III: $p>q+1$
Proposition: The series ${}_pF_q$ diverges for all $t \in \mathbb{C}$.
Proof: █
Derivatives
Proposition: Suppose that ${}_pF_q$ converges. Then $$\dfrac{d^n}{dt^n} {}_pF_q(\vec{a};\vec{b};t)=\dfrac{\vec{a}^{\overline{n}}}{\vec{b}^{\overline{n}}} {}_pF_q(\vec{a}+n;\vec{b}+n;t).$$
Proof: The computation $$\begin{array}{ll} \dfrac{d^n}{dt^n} {}_pF_q(\vec{a};\vec{b};t) &= \dfrac{d^n}{dt^n}\displaystyle\sum_{k=0}^{\infty} \dfrac{ \vec{a}^{\overline{k}} }{ \vec{b}^{\overline{k}} } \dfrac{t^{\underline{k}}}{k!} \\ &= \displaystyle\sum_{k=n}^{\infty} \dfrac{ \vec{a}^{\overline{k}} }{ \vec{b}^{\overline{k}} } \dfrac{t^{\underline{k-n}}}{(k-n)!} \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{ \vec{a}^{\overline{k+n}} }{ \vec{b}^{\overline{k+n}} } \dfrac{t^{\underline{k}}}{k!} \\ &=\dfrac{ \vec{a}^{\overline{n}} }{ \vec{b}^{\overline{n}} } \displaystyle\sum_{k=0}^{\infty} \dfrac{ (\vec{a}+n)^{\overline{k}} }{ (\vec{b}+n)^{\overline{k}} } \dfrac{t^{\underline{k}}}{k!} \\ &=\dfrac{ \vec{a}^{\overline{n}} }{ \vec{b}^{\overline{n}} } {}_pF_q(\vec{a}+n;\vec{b}+n;t) \end{array}$$ proves the claim. █
Proposition: Suppose that ${}_pF_q$ converges. Then $$\dfrac{d^n}{dt^n} \left[ t^{\gamma} {}_pF_q(\vec{a};\vec{b};t) \right] = (\gamma-n+1)^{\overline{n}}t^{\gamma-n} {}_{p+1}F_{q+1}(\gamma+1,\vec{a};\gamma+1-n,\vec{b};t).$$
Proof: First we suppose $n=0$ yielding the formula $$\begin{array}{ll} t^{\gamma}{}_pF_q(\vec{a};\vec{b};t) &= t^{\gamma-n} \displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}}{\vec{b}} \dfrac{t^k}{k!} \\ &= t^{\gamma-n} \displaystyle\sum_{k=0}^{\infty} \dfrac{(\gamma+1)\vec{a}}{(\gamma+1)\vec{b}}\dfrac{t^k}{k!} \\ &= t^{\gamma-n} {}_{p+1}F_{q+1}(\gamma+1,\vec{a};\gamma+1-0,\vec{b};t), \end{array}$$ obeying the formula. Now suppose that the formula is satisfied for $n=1,2,\ldots,N-1$. We will show now that the formula holds for $n=N$: $$\begin{array}{ll} \dfrac{d^{N}}{dt^{N}} \left[ t^{\gamma} {}_pF_q(\vec{a};\vec{b};t)\right] &= \dfrac{d}{dt} \left[ \dfrac{d^{N-1}}{dt^{N-1}} \left[ t^{\gamma} {}_pF_q(\vec{a};\vec{b};t) \right] \right] \\ &=\dfrac{d}{dt} \left[ (\gamma-(N-1)+1)^{\overline{N-1}} t^{\gamma-(N-1)} {}_{p+1}F_{q+1}(\gamma+1,\vec{a};\gamma+1-(N-1),\vec{b};t) \right] \\ &=(\gamma-N+2)^{\overline{N-1}}(\gamma-N+1)t^{\gamma-N}{}_{p+1}F_{q+1}(\gamma+1,\vec{a};\gamma-N+2,\vec{b};t) \\ &\hspace{4pt}+(\gamma-N+2)^{\overline{N-1}}t^{\gamma-N+1}\dfrac{(\gamma+1) \vec{a}}{(\gamma-N+2)\vec{b}} {}_{p+1}F_{q+1} (\gamma+2,\vec{a}+1;\gamma-N+3,\vec{b};t) \\ &= (\gamma-N+2)^{\overline{N-1}} \left\{ (\gamma-N+1)t^{\gamma-N}{}_{p+1}F_{q+1}(\gamma+1;\vec{a};\gamma-N+2,\vec{b};t) \right. \\ &\hspace{4pt}+ \left. t^{\gamma-N+1} \dfrac{(\gamma+1)\vec{a}}{(\gamma-N+2)\vec{b}} {}_{p+1}F_{q+1}(\gamma+2,\vec{a}+1;\gamma-N+3,\vec{b};t) \right\} NEEDSWORK \end{array}$$ █
Differential equation
Define the derivative operator $\vartheta=t \dfrac{d}{dt}$.Then $$\vartheta t^k = t \dfrac{d}{dt} t^k = t(kt^{k-1})=kt^k.$$
Proposition: The operator $\vartheta$ is a linear operator.
Proof: █
Theorem: Define $y(t)={}_pF_q(\vec{a};\vec{b};t)$. Then $y$ satisfies $$(\dagger) \hspace{35pt} \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta + b_j-1) - t \displaystyle\prod_{i=1}^p (\vartheta+a_i) \right]y=0.$$
Proof: First compute $$\begin{array}{ll} \left[ t \displaystyle\prod_{i=1}^p (\vartheta+a_i) \right] y(t) &= \left[ t \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] \displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!} \\ &= t\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \left[ \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] \dfrac{t^k}{k!} \\ &= t\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}k!} \left[ \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] t^k \\ &= t\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \left[ \displaystyle\prod_{i=1}^p (k+a_i) \right] \dfrac{t^k}{k!} \\ &=t\displaystyle\sum_{k=0}^{\infty} \dfrac{(\vec{a}+k)\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!}. \\ \end{array}$$ Now the computation $$\begin{array}{ll} \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta + b_j -1) \right]y(t) &= \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta+b_j-1) \right]\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!} \\ &=\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}k!} \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta + b_j -1) \right] t^k \\ &= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{k!} \left[ \dfrac{\displaystyle\prod_{j=1}^q (k + b_j -1)}{b^{\overline{k}}} \right] \vartheta t_k \\ &= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{k!} \left[ k\displaystyle\prod_{j=1}^q \dfrac{k+b_j-1}{b_j(b_j+1)\ldots(b_j+k-1)} \right] t^k \\ &= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{k!} \left[ \displaystyle\prod_{j=1}^q \dfrac{1}{b_j(b_j+1)\ldots(b_j+k-2)} \right] t^k \\ &= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k-1}}(k-1)!} t^k \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k+1}}}{\vec{b}^{\overline{k}}k!}t^{k+1} \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(\vec{a}+k)\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^{k+1}}{k!} \\ &= t\displaystyle\sum_{k=0}^{\infty} \dfrac{(\vec{a}+k)\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!} \\ &= \left[ t \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] y(t) \end{array}$$ proves the claim. █
Examples
${}_0F_0$
Exponential in terms of hypergeometric 0F0
${}_0F_1$
Relationship between cosine and hypergeometric 0F1
Relationship between sine and hypergeometric 0F1
Relationship between cosh and hypergeometric 0F1
Relationship between sinh and hypergeometric 0F1
Relationship between Bessel J sub nu and hypergeometric 0F1
${}_1F_0$
Theorem: The following formula holds: $$(1-z)^a = {}_1F_0(-a;;z).$$
Proof: █
${}_1F_1$
${}_1F_2$
Relationship between Struve function and hypergeometric pFq
${}_2F_0$
Bessel polynomial generalized hypergeometric
${}_2F_1$
z2F1(1,1;2,-z) equals log(1+z)
Relationship between arcsin and hypergeometric 2F1
Relationship between arctan and hypergeometric 2F1
Relationship between Chebyshev T and hypergeometric 2F1
Relationship between Chebyshev U and hypergeometric 2F1
Relationship between Legendre polynomial and hypergeometric 2F1
Relationship between incomplete beta and hypergeometric 2F1
Videos
Special functions - Hypergeometric series
References
Notes on hypergeometric functions
Rainville's Special Functions
Abramowitz and Stegun
Note on a hypergeometric series - Cayley